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Abstract

Several blooms of cyanobacteria naturally occurring in freshwater reservoirs have been associated to numerous

fatalities and cases of livestock and human poisoning. Microcystins (Mcs) are the most frequently found cyclic

heptapeptide toxins in the cyanobacterial extracts. In previous work, Radiocystis fernandoi (strain SPC 714) lyophilized

extracts were found to be hepatotoxic to mice with LD100 of about 60 mg kgK1 and Mc LR was suggested as responsible

for that toxicity. Here, we describe the isolation of four oligopeptides from R. fernandoi methanol extract by reversed-

phase high performance liquid chromatography (RP-HPLC). The major component, which eluted with 65% acetonitrile

from acetonitrile/water gradient, was identified as Mc-LR and its structure was confirmed by the presence of molecular

related ion species [MCH]C at m/z 996.3, ([MCH-Adda])C at m/z 861.5, [Arg-Adda-GluCH]C at m/z 599.8, and

[PhCH2CH(OMe)]C at m/z 135.1 in the ESI spectra. Two components corresponding to small signals eluted from C18

column, respectively, with 44 and 45% acetonitrile had their structures proposed as isomers of aeruginosin derivatives

showing molecular ions at m/z 651.7 and a [CHOI]C immonium at m/z 140.1. Finally, the structure of the third minor

and most hydrophobic component (68% acetonitrile elution) isolated from R. fernandoi extract seemed to correspond to a
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cyclic cyanopeptolin like micropeptin K139, a trypsin inhibitor firstly isolated from Microcystis aeruginosa, showing

similar ions fragmentation pattern and [MCH]C at m/z 987.6 in its ESI spectra.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cyclic peptide hepatotoxins are the most frequently

found cyanobacterial toxins in freshwater natural blooms

extracts. The first cyanotoxins isolated in the early 1980s

from Microcystis aeruginosa bloom extracts were referred

to as microcystins, cyclic heptapeptides with molecular

mass ranging from 800 up to 1100 Da (Chorus and Bartram,

1999).

Microcystins are potent liver toxins, general tumor

promoters, inhibitors of protein phosphatases and inhibi-

tors of protein synthesis (Chorus and Bartram, 1999;

Solter et al., 2000; Fastner et al., 2001; Ortea et al.,

2004). Their potent bioactivities are related mainly to

two amino acid residues, an unusual hydrophobic one,

(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phe-

nyl-deca-4,6-dienoic acid (Adda) at position 5, and N-

methyldehydroalanine (Mdha) at position 7 (Harada,

2004; Welker et al., 2004a,b). The microcystins general

structure is constituted by other D-amino acids, D-alanine,

3-methyl-D-aspartic acid or D-aspartic acid (MeAsp/Asp),

D-glutamic acid at positions 1, 3 and 6, respectively, two

variable L-amino acids at positions 2 and 4, a

b-methylated residue (usually D-methyl aspartic acid) at

position 3 and N-methylated residues at position 7 (Spoof

et al., 2003; Grach-Pogrebinsky et al., 2004; Harada,

2004; Ortea et al., 2004; Diehnelt et al., 2005). On the

other hand, Glu at position 6, attached by the g-carboxyl

group to residue in position 7 seems to be less prone to

variation, being always present in the known micro-

cystins (Namikoshi et al., 1992; Diehnelt et al., 2005).

Beside microcystins, it has been reported that cyano-

bacteria can biosynthesize other cyclic, multicyclic and

linear oligopeptides, such as nodularins (pentapeptides),

anabaenopeptins and cyanopeptolins (micropeptins, micro-

cystilides, aeruginopeptins), micoviridins (multicyclic;

1600–1850 Da), aeruginosins (550–900 Da) and the linear

modified peptides microginins (650–950 Da). As well as

microcystins, the structures of these peptides generally

include unusual amino acids residues, such as 3-(4-

hydroxyphenyl)-lactic acid (Hpla) and 2-carboxy-6-

hydroxy-octahydroindole (CHOI) in aeruginosins, or

3-amino-6-hydroxy-2-piperidone (Ahp) in cyanopeptolins,

b-amino-a-hydroxy-decanoic acid in the linear microginins

(Neumann et al., 1997; Fukuta et al., 2004; Harada, 2004;

Welker et al., 2004a,b). These peptides have been found to

exhibit a wide range of biochemical and pharmacological

activities frequently proteases inhibition (Fastner et al.,

2001; Bister et al., 2004; Welker et al., 2004a). Furthermore,
non-peptide toxins or alkaloidal neurotoxins, the so-called

anatoxins, saxitoxins or cylindrospermopsins with molecu-

lar mass minor than 450 Da, have been reported (Chorus and

Bartram, 1999; Namikoshi et al., 2003; Fastner et al., 2003).

These toxins are biosynthesized together to other non-toxic

hydroxylated alkaloids.

Microcystins and the other aforementioned bioactive

compounds have been isolated worldwide from several

genera of cyanobacteria, including Microcystis, Anabaena,

Planktothrix (formerly Oscillatoria), Hapalosiphon, Apha-

nocapsa, Synechocystis, and Nostoc (Sivonem, 1996;

Dawson, 1998; Domingos et al., 1999; Brittain et al.,

2000; Martins et al., 2005).

Toxicity of cyanobacterial blooms in Brazilian

drinking water reservoirs amounts to 80%, being a

great concern for public and livestock healthcare

(Azevedo et al., 1994; Carvalho et al., 2004). Recent

studies described the detection, isolation and identifi-

cation of R. fernandoi as a new cyanobacterium toxic

strain (Azevedo et al., 1994; Domingos et al., 1999;

Vieira et al., 2003; Carvalho et al., 2004). Here, we

report the isolation and characterization of microcystin-

LR as the main compound responsible for the toxicity

exhibited by R. fernandoi and of other three minor

oligopeptides simultaneously produced by this cyanobac-

terium. Thus, the toxicity of this specie may not be

solely attributed to microcystin-LR.
2. Material and methods

2.1. Radiocystis fernandoi culture

The unialgal strain R. fernandoi SPC 714 (non-axenic) was

isolated from Utinga Reservoir, city of Belém, state of Pará, at

018 270 2100 S and 488 300 1500 W, in 1999 August. This

cyanobacterium strain was cultured in 5 L culture bottles with

ASM-1 medium, pH 7.4, at 25 8CG1 8C, 14:10 h ligth:dark-

ness (20 mmol photon mK2 s1 light intensity), and moderate

aeration rate. The cells were grown until the end of the

exponential phase, harvested by centrifugation at 6000g

(15 min) and lyophilized (Vieira et al., 2003).
2.2. Extraction and isolation of microcystin-LR

The lyophilized cells (0.61 g) were submitted to

ultrasound (4!30 s, 50 W), extracted four times with
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methanol (MeOH):H2O (75:25, v:v) and then centrifuged

at 1045g for 60 min. The supernatants were combined

and evaporated under reduced pressure at 40 8C to

remove the organic solvent. The aqueous residue was

lyophilized, furnishing 0.13 g of a solid residue, which

was reconstituted with 0.5 mL MeOH:H2O (1:1, v:v) and

applied to a BakerbondÒ Octadecyl (C18) Prep LC

Packing column (9.0!1.9 cm ID, 40 mm particle size).

The eluting solvents were 0.1% aqueous trifluoroacetic

acid (TFA) solution (30 mL) and MeOH:H2O (20:80, v:v,

30 mL). The aqueous extract was lyophilized and the

methanol extract was vacuum concentrated (Harada et al.,

1988; Harada, 1996; Spoof et al., 2003).
2.3. Purification of compounds by RP-HPLC

The aqueous and methanol fractions were pooled and

filtered through 0.45 mm Millipore membrane and separated

by using a modular Shimadzu LC-10A HPLC system

comprised of a solvent binary pump (two LC-10AD

pumps), UV/Vis detector, and SCL-10Avp system controller

software and workstation. Fractionation was performed by

employing a Shimadzu C18 analytical (0.46!25.0 cm,

5 mm, 300 Å) or semi-preparative (2.2!25.0 cm, 5 mm,

300 Å) columns, binary gradient of 5–95% solvent B in

30 min, using 0.1% aqueous TFA solution as solvent A and

80% aqueous acetonitrile (ACN) solution (containing 0.09%

TFA) as solvent B, flow rate of 1 mL minK1 and detection at

238 nm. Four fractions were manually collected and

lyophilized

2.4. Analysis of purified products by ESI-TOF MS

ESI-MS analyses were carried out on a Watersw

Micromassw Q-Tof microe Mass Spectrometer (Micromass

Ltd, Manchester, UK) fitted with an electrospray ion source,

operated in positive ion mode. The capillary voltage was

3.0–3.5 kV and cone voltages were 30–40 V. MS2

experiments were performed by Collision Induced Dis-

sociation (CID), carried out by using argon as the collision

gas with collision energies in the range from 20 to 50 eV.

The instrument ran under control of MassLynx 4.0 data

system (Micromass). Mass spectrometer was calibrated by

using NaI/CsI in the 100–2000 m/z range.
3. Results and discussion

The pre-purification of 610 mg lyophilized cells of

R. fernandoi furnished 130 mg crude extract which were

fractionated by BakerbondÒ Octadecyl (C18) Prep LC

Packing column to yield an aqueous (10.5 mg) and a

methanol (5.8 mg) fractions. Since the total amount of

material in these fractions was low, the aqueous and

methanol fractions were pooled and fractionated by RP-
HPLC. Methanol aqueous solutions with sonication are

commonly employed for microcystins extraction. Barco

et al. (2005) performed a systematic investigation of

solvents employed for microcystin extraction and con-

cluded that acidified methanol is the optimum solvent.

Despite the absence of acid in our extraction solvent

system, a microcystin could be extracted. In addition to

that, the combination of methanol and aqueous extracts

probably allowed the first isolation of other cyanotoxins

in R. fernandoi.

Samples corresponding to the pooled fractions (16.3 mg)

were separated by RP-HPLC in four chromatographic

products designated by Rf-F1, Rf-F2, Rf-F3 and Rf-F4.

Detection was conducted at 238 nm to search for products

containing Adda. The predominant chromatogram elution

product (Rf-F3; 800 mg of lyophilized mass) eluted from

C18 column with retention time of 25.5 min (Fig. 1). Other

three components of R. fernandoi extract, corresponding to

small signals with retention times (RT) of 16.5, 17.0 and

26.5 min in the chromatogram of the Fig. 1, were isolated.

The purified and lyophilized fractions Rf-F1 (100 mg), Rf-

F2 (!100 mg) and Rf-F4 (100 mg) were individually

analyzed by ESI-MS.

The [MCH]C molecular ion observed in the ESI-Q-

TOF/MS spectrum of Rf-F1 (RT 16.5 min) was attributed to

a compound of 651.3 molecular mass, which differed by

only 2 Da from that of non-sulphated aeruginosins 102-A

and B, linear tetrapeptides described in the literature as

possessing molecular mass of 653 by FABMS (Matsuda

et al., 1996). The existence of [CHOI]C immonium at m/z

140.1, as suggested by MS/MS experiments (Fig. 2),

indicated that Rf-F1 could be indeed a variant derivative

of such aeruginosins (Matsuda et al., 1996). MS/MS data did

not give rise to a definitive structure attribution, but a simple

dehydrogenation of aeruginosin 102 seems unlikely because

fragments correspondent to this product were not found in

the MS/MS spectrum (Fig. 2). One possible structural

difference between the aeruginosin from R. fernandoi and

aeruginosins 102-A and B is the presence of 3-(4-

aminophenyl)-lactic acid (Apla) instead of 3-(4-hydroxy-

phenyl)-lactic acid (Hpla) at the first residue. Another piece

of evidence in favor to attribution of the previous compound

as an aeruginosin is that the spectrum of Rf-F2 (RT

17.0 min) also showed a molecular ion at m/z 651.3,

probably corresponding to a tautomer of the protonated

Rf-F1 molecule. Similar tautomerization was observed in

the well-known protease inhibitors leupeptin and antipain,

which possess Argal at C-terminus (Matsuda et al., 1996).

The [MCH]C observed at m/z 995.6 in the ESI-Q-

TOF/MS spectrum of Rf-F3 (RT of 25.5 min) indicated the

presence of Mc LR. Diehnelt et al. (2005) observed a double

charged ion [MC2H]2C at m/z 498.3 that was not an intense

signal in the spectrum. The MS2 experiment (Fig. 3) by

fragmenting the protonated molecule at m/z 995.6 showed

the presence of the ion [PhCH2CH(OMe)]C at m/z 135.1,

characteristic of Mcs, which is generated by the a-cleavage
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Fig. 1. RP-HPLC profile of Radiocystis fernandoi lyophilized cells extract. Experimental conditions: Shimadzu C18 column [(0.46!25.0) cm,

5 mm, 300 Å]; solvent A: 0.1% aqueous TFA solution; solvent B: 80% aqueous acetonitrile (ACN) solution (containing 0.09% TFA); gradient:

5–95% solvent B in 30 min; sample injected volume: 10 mL (ca. 0.5 mg microcystin LR); flow rate: 1 mL minK1; detection: 238 nm. AU,

absorbance units.
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at the methoxy group of Adda b-amino acid moiety. The ion

fragment at m/z 553.4 corresponds to [MdhaAlaLeuMeAs-

pArgCH]C evidencing the presence of other amino acid

residue characteristic of MCs, methyldehydroalanine

(Mdha), and also indicating the presence of the residues

Leu and Arg at positions 2 and 4, respectively. Additionally,
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 4
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100 140.122

264.186
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185.145
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Fig. 2. MS/MS spectrum of m/z 651.3 parent ion. Fragmentation was achie

CID using argon as collision gas in the positive mode. Collision voltages

software. The chosen parent ion (m/z 651.3) was from R. fernandoi fracti
the following molecular ion species have provided full

confirmation of Mc LR identity: [Glu-MdhaCH]C at m/z

213.1, [MC2H]2C at m/z 498.3, ([MCH-Adda])C at m/z

861.5, [Arg-Adda-GluCH]C at m/z 599.8, [MCH-Glu]C at

m/z 866.6, and [C11H14O-Glu-Mdha]C at m/z 375.2

Microcystin LR was thus isolated as the major component
m/z
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ved in Watersw Micromassw Q-Tof microe Mass Spectrometer by

were ramped from 20 to 50 eV and data analyzed by MassLynx 4.0

on 1 (Rf-F1) collected from RP-HPLC (Rf-F1, Fig. 1).
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Fig. 3. MS/MS spectrum of m/z 995.6 parent ion. Fragmentation was achieved in a Watersw Micromassw Q-Tof microe Mass Spectrometer by

CID using argon as collision gas in the positive mode. Collision voltages were ramped from 20 to 50 eV and data analyzed by MassLynx 4.0

software. The chosen parent ion (m/z 995.6) was from R. fernandoi fraction 1 (Rf-F3) collected from RP-HPLC (Rf-F3, Fig. 1).
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Fig. 4. MS/MS spectrum of m/z 987.7 parent ion. Fragmentation was achieved in a Watersw Micromassw Q-Tof microe Mass Spectrometer by

CID using argon as collision gas in the positive mode. Collision voltages were ramped from 20 to 50 eV and data analyzed by MassLynx 4.0

software. The chosen parent ion (m/z 987.7) was from R. fernandoi fraction 1 (Rf-F4) collected from RP-HPLC (Rf-F4, Fig. 1).
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of the pooled fractions (corresponding to 0.0013% of the

dried cells).

Finally, the spectrum of Rf-F4 (RT 26.5 min) presented

in Fig. 4 shows a major product with [MCH]C at m/z 987.7.

The structure that could present such ions fragmentation

pattern corresponds to Micropeptin K139, a trypsin inhibitor

firstly isolated from M. aeruginosa, which possesses

molecular mass of 987.2 (theoretical m/z 988.2), and

molecular formula as C47H74N10O13 (Fig. 5) (Harada,

2004; Welker et al., 2004a). The peak observed at m/z

774.6 (theoretical m/z: 774.9) corresponding to [MCH-

213.1]C could have originated by the cleavage of a

hexanoyl group and the exocyclic glutamic acid residue in

Micropeptin K139 (Fig. 5).

From our results we concluded that the production of

microcystin LR by cyanobacterium R. fernandoi is

predominant, confirming its toxicity previously described.
Three other oligopeptides were purified and identified as

two new tautomers compounds of the aeruginosins family

and as a micropeptin, which could probably exert protease

inhibition activities in the similar way to those known

related compounds. Thus, R. fernandoi produces at least

three different classes of toxins.
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