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Despite the importance of viral strains/variants as agents of emerging diseases, genetic
and evolutionary processes affecting their ecology are not fully understood. To get insight
into this topic, we assessed the population and spatial dynamic parameters of citrus
leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae). CiLV-C is the etiological
agent of citrus leprosis disease, a non-systemic infection considered the main viral
disorder affecting citrus orchards in Brazil. Overall, we obtained 18 complete or near-
complete viral genomes, 123 complete nucleotide sequences of the open reading frame
(ORF) encoding the putative coat protein, and 204 partial nucleotide sequences of the
ORF encoding the movement protein, from 430 infected Citrus spp. samples collected
between 1932 and 2020. A thorough examination of the collected dataset suggested
that the CiLV-C population consists of the major lineages CRD and SJP, unevenly
distributed, plus a third one called ASU identified in this work, which is represented by
a single isolate found in an herbarium sample collected in Asuncion, Paraguay, in 1937.
Viruses from the three lineages share about 85% nucleotide sequence identity and show
signs of inter-clade recombination events. Members of the lineage CRD were identified
both in commercial and non-commercial citrus orchards. However, those of the lineages
SJP were exclusively detected in samples collected in the citrus belt of Sao Paulo and
Minas Gerais, the leading Brazilian citrus production region, after 2015. The most recent
common ancestor of viruses of the three lineages dates back to, at least, ~1500 years
ago. Since citrus plants were introduced in the Americas by the Portuguese around the
1520s, the Bayesian phylodynamic analysis suggested that the ancestors of the main
CiLV-C lineages likely originated in contact with native vegetation of South America. The
intensive expansion of CRD and SJP lineages in Brazil started probably linked to the
beginning of the local citrus industry. The high prevalence of GiLV-C in the citrus belt of
Brazil likely ensues from the intensive connectivity between orchards, which represents
a potential risk toward pathogen saturation across the region.
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INTRODUCTION

Brazil is the leading sweet orange producer in the world. With
almost 197.7 million sweet orange (Citrus x sinensis (L.) Osbeck)
trees', the citrus belt Sdo Paulo (SP)—Minas Gerais (MG) is the
largest citrus cultivation area in South America and accounts
for more than 80% of the Brazilian sweet orange production
(Bassanezi et al., 2019). Citrus orchard yields may be impacted
by citrus leprosis (CL) disease, ranked first among the viral
diseases affecting this crop in Brazil (Ramos-Gonzilez et al,
2018). Control of CL reaches up to US$ 54 million/year, a value
representing about 5% of the management cost of orchards in the
main Brazilian citrus belt (Bassanezi et al., 2019).

Despite the multi-etiological character of CL, citrus leprosis
virus C (CiLV-C) is, by far, the prevalent causal agent in Brazil
(Ramos-Gonzalez et al., 2016, 2017, 2018; Chabi-Jesus et al.,
2018). The virus infects several species within the genus Citrus
and their hybrids, although with different degrees of severity.
While sweet oranges show high susceptibility, mandarins
(C. reshni, C. reticulata, and C. deliciosa) are moderately resistant,
and lemons (C. limon) and limes (C. aurantifolia) are considered
resistant (Bastianel et al., 2018). CiLV-C also naturally infects
Commelina benghalensis and Swinglea glutinosa and can be
experimentally transmitted to plants of 28 families (Ledn et al.,
2008; Nunes et al., 2012; Garita et al., 2014; Arena et al., 2017).

Citrus leprosis virus C is the type species of the genus Cilevirus,
family Kitaviridae (Locali-Fabris et al., 2006, 2012; Freitas-Astta
et al., 2018). In addition to cileviruses, the family also includes
members of the genera Higrevirus and Blunervirus (Melzer et al.,
2012; Quito-Avila et al., 2013). Kitaviruses have bacilliform or
spherical virions, divided positive-sense single-stranded RNA
genomes, and likely share common ancestors with arthropod-
infecting viruses of the group negevirus and nege/kita-like viruses
(Roy et al., 2015; Kondo et al., 2020; Quito-Avila et al., 2020;
Ramos-Gonziélez et al., 2020).

Aside from CiLV-C, the genus Cilevirus also includes citrus
leprosis virus C2 and passion fruit green spot virus (PfGSV)
(Roy et al., 2013; Ramos-Gonzilez et al., 2020). The canonical
cilevirus genome comprises six open readlng frames (ORFs)
split into two molecules, RNA1 and RNA2. RNA1 is ~9.0
kb in length and includes two ORFs encoding the RNA-
dependent RNA polymerase (RdRp) and the putative coat protein
(p29). RNA2 is ~5.0 kb in length and has four ORFs (pl5,
p6l, p32, and p24). In CiLV-C, the RNA2 also contains an
intergenic region (IR) of ~1 kb located between the ORFs p15
and p61. P15, P61, and P24 are proteins without definitively
associated functions, although the first two seem to be involved
in the suppression of the RNA silencing mechanism (Leastro
et al.,, 2020) and the latter one is conserved among cileviruses,
higreviruses, and an increasing number of arthropod-infecting
viruses (Kuchibhatla et al., 2014; Kondo et al., 2020; Ramos-
Gonzalez et al.,, 2020). The p32 encodes a movement protein
(MP) of the 30K superfamily (Mushegian and Elena, 2015;
Leastro et al., 2021).

Uhttps://www.fundecitrus.com.br/

CiLV-C does not systemically infect its host plants, it only
causes local chlorotic and/or necrotic lesions in leaves, fruits,
and branches (Figure 1), which may result from an incompatible
interaction led by a hypersensitivity-like response (Arena et al.,
2016, 2020). The viral spread, even to different points in an
infected plant, is exclusively mediated by viruliferous mites
of, mainly, the species Brevipalpus yothersi (Ramos-Gonzilez
et al, 2016). B. papayensis is also able to transmit the virus
under experimental conditions (Nunes et al., 2018). Nonetheless,
the CiLV-C/Brevipalpus spp. interaction has not been fully
characterized yet. While biological and electron microscopy data
suggest a circulative transmission (Kitajima et al., 2003, 2008;
Tassi et al., 2017), non-conclusive molecular assays suggested
the viral multiplication in the Brevipalpus cells. Negative-sense
CiLV-C viral genomes detected in mite extracts (Roy et al., 2015)
could have been remnants from the infected plant cells after mite
feeding (Tassi et al., 2017). Moreover, the specific detection of the
viral negative-strand RNA by reverse transcription-polymerase
chain reaction (RT-PCR) could have been the result of false
amplification due to either self-priming of the positive-strand
RNA or the primer activity of other cellular nucleic acids (Haddad
et al., 2007; Boncristiani et al., 2009; Haist et al., 2015; Strydom
and Pietersen, 2018).

Preliminary studies revealed that the CiLV-C population
has a low genetic variability (x < 0.01) and is subdivided
into the clades CRD and SJP (Ramos-Gonzédlez et al., 2016).
Type viruses of each lineage share ~85% genome nucleotide
identity, except the 5'-ends of their RNA2 molecules. With ~98%
nucleotide sequence identity, the high uniformity of the genomic
segments compressing the p15-IR regions is likely a consequence
of a natural recombination process (Ramos-Gonzalez et al.,
2016). The lineage CRD is prevalent throughout Latin America,
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FIGURE 1 | Symptoms of citrus leprosis (CL) disease and place of collection
of the infected Citrus spp. samples across Latin America. (A,B,D,F) Samples
conserved at the Herbarium of Instituto Biolégico, Sao Paulo, Brazil. (C,E,G)
Fresh citrus samples. (A) CiLV-C isolate Jbt02, Jaboticabal, Sdo Paulo, Brazil,
1975. (B) CiLV-C isolate Urg01, Uruguaiana, Rio Grande do Sul, Brazil, 1937.
(C) CiLV-C isolate Bar25, Séo Paulo, Brazil, 2018. (D) CiLV-C isolate Asu02
from Asuncion, Paraguay, 1937. (E) CiLV-C isolate PY03, Paraguay, 2010
(fruit) and 2015 (leaf). (F) CiLV-C isolate Ar06, Misiones, Argentina, 1937.

(G) CiLV-C isolate AR04, Corrientes, Argentina, 2017.

Herbarium samples

Latin America
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whereas, until 2015, the lineage SJP was only detected in
three counties in the northwestern region of the state of Sdo
Paulo, Brazil (Ramos-Gonzalez et al., 2016). However, most
aspects concerning the diversity, distribution, transmissibility,
and virulence of these strains remain largely unknown.

In this study, we investigated the distribution, dynamic and
evolutionary parameters of the CiLV-C population through the
analysis of 430 fresh or herbarium samples of CL-affected Citrus
spp. tissues collected from commercial or non-commercial citrus
orchards between 1932 and 2020. We also reconstructed the
evolutionary history of CiLV-C and contextualized it with the
origin and expansion of citrus crops in the Americas.

MATERIALS AND METHODS

Citrus Samples

A total of 430 individual or mixed lesions from leaves, fruits,
or branches were collected from 304 citrus plants showing
typical chlorotic and/or necrotic symptoms of CL (Table 1 and
Supplementary Table 1). The RNA extracts were obtained from:
(i) eight sweet orange (Citrus sinensis) samples stored at the
Herbarium of Instituto Bioldgico, Sao Paulo, collected from 1932
to 1975 in Brazil (n = 6), Argentina (n = 1), and Paraguay (n = 1);
ii) 41 leaf samples of Citrus spp. stored in —80°C freezer collected
from 2003 to 2015 in Brazil (n = 31), Argentina (n = 6), Bolivia
(n = 1), Paraguay (n = 1), and Colombia (n = 1); (iii) 37 sweet
orange fruit samples collected from commercial citrus orchards
in the citrus belt SP-MG in the period 2015-2016; (iv) 18 leaf
samples of Citrus spp. collected from non-commercial citrus
orchards in Brazil (n = 10), Argentina (n = 7), and Paraguay

(n = 1) in the period 2015-2019; (v) 325 fruit lesions from 199
sweet orange trees collected in 196 commercial citrus orchards
in the citrus belt SP-MG in the period 2017-2020; and (vi) one
lesion from a sweet orange fruit collected in a commercial organic
orchard, State of Par4, Brazil, in 2020.

RNA Isolation

RNA extraction was performed either from fresh or herbarium
plant tissues. For fresh samples, about 100 mg of leaf lesions
were ground in liquid nitrogen and the total RNA was extracted
using Trizol® according to the manufacturer’s recommendation
(Thermo Fisher Scientific, Waltham, MA, United States). For
the herbarium samples, in addition to the treatment with 0.01%
diethylpyrocarbonate (DEPC) solution and 120°C sterilization,
mortars and pestles were kept in an oven at 200°C for 48 h before
the extractions. Approximately 600 mg of dry symptomatic
tissues were ground in liquid nitrogen and processed following
the Trizols® procedure modified as previously described (Ramos-
Gonzdlez et al., 2016). Regardless of the origin of samples,
final RNA solutions were precipitated using 0.1 volume of
sodium acetate 3 M and 2.5 volume of isopropanol, kept at
—80°C for 12 h, and centrifuged at 10,000 x g for 10 min at
4°C. The concentration and quality of the RNA extracts were
assessed by NanoDrop ND8000 spectrophotometer (Thermo
Fisher Scientific), and 1.2% agarose gel stained with ethidium
bromide (10 mg/mL) or Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, United States), respectively. For samples collected
in commercial citrus orchards from 2017 to 2020, the total RNA
extracts were obtained from a single lesion found on the affected
fruits. With this, we aimed to reduce the interference resulting
from a putative intra-host virus variability and to detect whether

TABLE 1 | Summary of the set of Citrus spp. samples gathered in this study.

Place of collection Orchard type Year of collection Number of analyzed samples (individual or mixed lesions)
CiLV-C strains Total
CRD SJP ASU®”  CDR+4SJPsametree®  CDR+SJP same lesion?
Brazil
SP and MG? Non-commercial 1932-2020 18 2 - 0 0 20
Commercial 2003-2014 12 0 - 0 0 12
2015-2016 7 33 - 3 - 43
2017-2020 42 207 - 2 74 325
Other states Non-commercial 1937-2018 10 0 - 0 0 10
Commercial 2020 1 0 - 0 0 1
Other countries
Argentina Non-commercial 1937-2019 14 0 - 0 0 14
Colombia Non-commercial 2008 1 0 - 0 0 1
Bolivia Non-commercial 2003 1 0 - 0 0 1
Paraguay Non-commercial 1937-2019 2 0 1 0 0 3
Total 108 242 1 5 74 430

CiLV-C strains were detected by reverse transcription-polymerase chain reactions and/or high-throughput sequencing.

@Brazilian states abbreviations: Sdo Paulo (SP) and Minas Gerais (MG,).

bidentification by HTS, giving that all available primers were not able to identify this strain.

®Members of the clades SJP and CRD detected in samples from the same tree.
9Members of the clades SJP and CRD detected in the same CL lesion.
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viruses belonging to more than a clade could be infecting a single
lesion (detailed in Supplementary Table 1).

Detection of CiLV-C and Other Citrus
Leprosis Symptom Producing Viruses by
RT-PCR

Five hundred nanograms of total RNA were used for cDNA
synthesis in a final reaction volume of 20 wL using the RevertAid
H Minus First-Strand ¢cDNA Synthesis Kit (Thermo Fisher
Scientific). The presence of CL-associated viruses was assessed
by PCR using cDNA as template (3 wL), specific primer pairs
(Table 2), and GoTaq G2 Master Mix Green kit (Promega,
Madison, W1, United States). For CiLV-C, in addition to primers
for the detection of p29 (Ramos-Gonzalez et al., 2016) and p32
(Locali et al., 2003), a set of strain-specific and degenerate primers
were developed based on available GenBank p24 sequences
(CiLV-C RNA2 of the isolates SJP01 and Crd01: KP336747 and
NC008170, respectively). To do this, sequences were aligned
using MUSCLE implemented in MEGA version 7.0.21 (Kumar
et al,, 2016), and primers were designed using Geneious software
platform version 11.1.4 (Kearse et al., 2012) (Table 2). The
thermal cycles were as follows: 94°C, 3 min; 35 cycles of 94°C,
30 s; 54°C, 30 s; 72°C, 30 s; and a final extension at 72°C
for 5 min. To confirm the specificity of primers, the amplicons
were resolved on a 1% agarose gel, excised, purified, and Sanger
sequenced. The putative presence of the cilevirus citrus leprosis
virus C2 (CiLV-C2) (Roy et al., 2013) and the dichorhaviruses
citrus leprosis virus N (CiLV-N) (Ramos-Gonzélez et al., 2017),
citrus chlorotic spot virus (CiCSV) (Chabi-Jesus et al., 2018), and
orchid fleck virus (OFV) (Kubo et al., 2009) were screened by
PCR using previously described primers (Table 2).

Partial Sequencing of CiLV-C Isolates

The complete sequence of p29 (795 nts) and partial sequence
of p32 (288 nts) in the RNA1 and RNA2, respectively, of CiLV-
C isolates, were obtained using described primers (Locali et al.,
2003; Ramos-Gonzalez et al., 2016; Table 2). Amplicons were
obtained from 26 samples collected in non-commercial citrus
regions in Brazil and Argentina, from 2006 to 2019, and 31 from
commercial citrus orchards inside the citrus belt SP-MG, in the
period 2017 to 2019 (Supplementary Table 1). After RT-PCR,
amplicons were purified using Wizard SV Gel and PCR Clean-Up
System (Promega, Madison, W1, United States), and cloned into
pGEM-T-Easy (Promega, Madison, W1, United States). Plasmids
were transformed into Escherichia coli DH10B competent cells
by electroporation, and 5-10 recombinant clones derived from
each sample were sequenced by the Sanger method (Instituto
Biologico, SP, Brazil). PCR products from some samples collected
in non-commercial orchards (Supplementary Table 1) were
directly sequenced after the purification using the Wizard SV Gel
and PCR Clean-Up System (Promega).

High-Throughput Sequencing of CiLV-C
Genomes

Small RNA (sRNA) from the herbarium samples were sequenced
on an Illumina HiSeq 2500 system (Illumina, San Diego,

TABLE 2 | Primer list used for the detection of viruses associated with citrus
leprosis disease by reverse transcription-polymerase chain reaction.

Virus? Target Primer sequence Tab Amplicon References
(5'-3') (°C) size (bp)
CiLV-C  p32 F: GCGTATTGGCGTT 56 339 Locali et al.,
GGATTTCTGAC 2003
R: TGTATACCAAGCC
GCCTGTGAACT
p29 F: ACCGTGAATTTGT 1,000 Ramos-
ATTTTGTCA Gonzélez et al.,
2016
R: CAGCTGGAAGAGA
CTAGAAA
p15  F: GTCAAGTGATATCC 667 Ramos-
ATTTTGCTTG Gonzélez et al.,
2016
R: TCATCGTCTTTTC
TGTAACCG
p24 F: CGCAGTTTCCTAA 54 322 This study
TAACACC
R: GCTTTATGCTGAA
CTCCC
CiLV-C  p29 F: CAGAAGGCCGAGG 56 330 Ramos-
CRD TTGTAAAG Gonzélez et al.,
2016
R: GTAGTGATCACT
GAACTCGAATACC
p24  F: ATGTTGGCAACG 54 522 This study
GAAAGTT
R: GTGAACAGGGTTG
AAAAAGTT
CiLV-C  p29 F: GTAARCAAAAGG 56 456 Ramos-
SJP TCGAGGTTGTCC Gonzélez et al.,
2016
R: TCTGTTGTCTAGC
AGCRAGTAATG
p24  F: CTCATGATATCCTTG 54 393 This study
ATGACC
R: GACTAATAAGGTT
GAGAAGGTTG
CiLV- p29 F: ATGAGTAACATTG 56 795 Roy et al., 2013
c2 TGTCGTTTTCGTTGT
R: TCACTCTTCCTGTT
CATCAACCTGTT
OFV L F:. CAASTGTCATGCC 54 362 Ramos-
+CiLv- TGCATGG Gonzélez et al.,
N 2017
R: TTGATRCATGATG
CRAGRCTGTATG
CiCsv G  F: CTGTTTTGCCCAT 500 Chabi-Jesus
GCTAC etal., 2018
R: CCTCCTCTTCTAG
CGTCAT

aVirus or clade-specific viruses identified by each primer pair. Virus acronyms: CiLV-
C, citrus leprosis virus C; CiLV-C CRD, lineage CRD; CiLV-C SJF, lineage SJP;
CiLV-C2, citrus leprosis virus C2; OFV, orchid fleck virus; CiLV-N, citrus leprosis
virus N; CiCSV, citrus chlorotic spot virus.

bTa: PCR annealing temperature. F and R indicate forward and reverse primers,
respectively.

United States) either at Genewiz (South Plainfield, NJ,
United States) or BGI (Shenzhen, Guangdong, China) (Table 3).
For most of the non-herbarium samples, total RNA extracts
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TABLE 3 | Brief description of the 18 high-throughput sequencing (HTS) libraries obtained in this study.

Host species/ Local of collection Year of Sequencing HTS Number of RNA CiLV-C-derived reads and contigs
variety city/state/ country collection company library reads molecule
% of viral-derived Number of Contig length  Viral coverage
reads in the library assembled contigs range (nts) (%)
Herbarium samples
Citrus sinensis Jacarei, SP, BR? 1932 Genewiz, siRNA 59,435,658 1 0.01 15 150-1423 99.3
United States
2 0.01 9 148-2116 99.6
C. sinensis (Washington Piracicaba, SP, BR 1932 Genewiz, siRNA 71,037,882 1 0.01 6 121-4168 100
Navel) United States
2 0.01 3 1478-1916 100
C. sinensis Uruguaiana, RS, BR 1937 BGl, China SiRNA 63,116,147 1 2.1 3 235-7026 100
2 1.1 2 24499-2317 100
C. sinensis (Washington Asuncion, PY 1937 BGl, China SiRNA 61,507,832 1 20.2 6 403-3709 100
Navel)
2 14.6 4 1085-3781 100
C. sinensis Santa’Ana, Misiones, AR 1937 BGlI, China siRNA 62,116,588 1 6.5 2 427-8144 100
2 4.3 1 4785 100
C. sinensis (Washington Limeira, SP, BR 1939 Genewiz, siRNA 74,407,978 1 0.02 6 187-7577 100
Navel) United States
2 0.01 4 4850-4858 100
C. sinensis Sao Paulo, SP, BR 1941 BGl, China siRNA 59,404,138 1 0.05 19 147-988 100
(Pera)
2 0.05 9 144-707 100
Citrus sp. Jaboticabal, SP, BR 1975 Genewiz, siRNA 56,790,128 1 16.4 22 117-4750 100
United States
2 7.7 19 125-4428 100
Sample stored at —80°C
C. sinensis AR 2006 Esalqg, USP, mRNA 14,872,149 1 14.2 23 154-8724 100
Brazil
2 2.5 5 162-5276 100
Samples from fresh tissues
C. sinensis Piracicaba, SP, BR 2016 Esalqg, USP, mRNA 15,553,431 1 5.5 2 630-8147 100
Brazil
2 1.2 1 4963 100
C. sinensis Corrientes, AR 2017 Esalqg, USP, mRNA 14,410,186 1 1.6 1 8747 100
Brazil
2 1.4 2 292-4742 100
C. reticulata Piracicaba, SP, BR 2018 Esalg, USP, mRNA 15,165,394 1 0.9 3 416-8755 100
Brazil
2 0.2 1 4975 100
C. sinensis Sud Mennucci, SP, BR 2018 Esalqg, USP, mMRNA 16,377,921 1 20.6 32 93-821 100
Brazil
2 6.8 30 58-892 100
(Continued)
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Brazil

100
100

104-1031
250-3340

34

11.5

13.3

Instituto SiRNA 10,557,136

Bioldgico, SP,

2020

C. reticulata

Jumirim, SP, BR

Brazil

100
100

470-1428
82-7820

6.7

27

9.9

2020 Esalg, USP, mRNA 16,571,118

Santo Antonio da Posse,

SP, BR

C. sinensis

Brazil

100

58-892

24

6.5

aCountry: BR, Brazil; AR, Argentina; PY, Paraguay.

were processed at the Laboratory of Animal Biotechnology of
the University of Sdo Paulo (Piracicaba, SP, Brazil). Poly(A)
enrichment of the RNA extracts and cDNA libraries were
prepared with Illumina TruSeq Stranded mRNA Library Prep
Kit (Illumina, San Diego, United States). Sequencing was
performed in an Illumina HiSeq 2500 system using HiSeq
SBS v4 High Output Kit (Illumina, San Diego, United States).
Paired-end reads of 2 x 125 bp were generated. The viral
sequence in the sample BR_SP_Jmr01 was obtained using the
Ion GeneStudio'™ S5 System (Thermo Fisher Scientific) at the
Instituto Bioldgico, Sdo Paulo, Brazil. The sRNA library from this
sample was obtained using Ion Total RNA-Seq Kit v2 (Thermo
Fisher Scientific). The quality of reads obtained by all the
methodologies was checked using FastQC (Andrews, 2010) and
the adaptor sequences were removed using the Trimmomatic
(Bolger et al, 2014). Reads from all types of libraries were
assembled with SPAdes (Bankevich et al., 2012) although using
different k-mer sizes: 15, 17, 19 for sRNA libraries, and 33, 43, 55
for poly(A)-enriched RNA libraries. Viral contigs were identified
using the Basic Local Alignment Search Tool (BLASTx and/or
BLASTn) implemented in Geneious using a local database
including viral reference genomes retrieved from the NCBI virus
database® (Hatcher et al., 2017). After the identification and
when necessary, reads were mapped to the reference genomes in
an iterative mapping approach (Tsai et al., 2010) using Bowtie2
or BBMap to fill gaps and extend the end sequences of viral
genomes (Langmead and Salzberg, 2012; Bushnell, 2014).

Recombination and Reassortment

Analyses

Recombination events were assessed using seven methods (RDP,
GENECONY, Bootscan, Maxchi, Chimaera, SiScan, and Topal)
implemented in RDP version 5.5 (Martin et al., 2015) and GARD
(Kosakovsky Pond et al., 2006). Sequences were aligned using
the MUSCLE, MAFFT, and Clustal software, implemented in
Geneious. Recombination events detected by more than three
programs (p < 0.05) implemented in the RDP vs. 5.5 were
considered as recombinants. Due to the length heterogeneity of
sequences available, four independent analyses were carried out:
(i) complete sequences of each CiLV-C genome (8,984 nts of
RNA1 and 5,077 nts of RNA2; n = 23); (ii) p29 (RNA1) (795
nts; n = 190); (ifi) partial p32 (RNA2) (288 nts; n = 270);
(iv) and a partial RNA2 concatenated sequences [complete
p15 ORF (393 nts)—intergenic region (934 nts, upstream the
p61 ORF)—partial p32 (288 nts); n = 56]. The reassortment
events were analyzed based on the topology of the phylogenetic
trees. All CiLV-C sequences available at the GenBank were
retrieved and incorporated into this and further in silico analyses
(Supplementary Table 1).

Phylogenetic Analyses Based on

Complete Genomes and CiLV-C ORFs
Nucleotide sequence alignments were performed using MUSCLE
implemented in MEGA version 7.0.21 (Kumar et al., 2016). Best-
fit models for nucleotide substitutions were determined with

“https://www.ncbinlm.nih.gov/labs/virus/vssi/#/
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Bayesian Information Criterion (BIC) implemented in MEGA
version 7.0.21 (Kumar et al., 2016). They were as follow: model
GTR+G for RNA1 (n = 23), HKY+G++I for both the RNA2
(n = 23) and the concatenated partial RNA2 sequences (pI5-
IR-p32, n = 56), and HKY+G for the nucleotide sequences
alignments of p29 (n = 190) and p32 (n = 270). Phylogenetic trees
were generated by Bayesian inference using a variant of Markov
chain Monte Carlo (MCMC) with MrBayes, implemented in
Geneious (Huelsenbeck and Ronquist, 2001; Kearse et al., 2012),
with 6,000,000 generations and cognate sequences from CiLV-
C2_Colombia (NC038848 and NC038849) as outgroup. Genomic
regions involved in the recombination events were excluded
before the phylogenetic tree building to minimize their influence
on tree topologies. Trees were viewed and edited using iTOL
version 4 (Letunic and Bork, 2019). Nucleotide distances within
and between clades were calculated using MEGA version 7.0.21.

Temporal Phylogenetic Analyses of the
CiLV-C Population

Assessment of the time to the most recent common ancestor
(tMRCA) of CiLV-C isolates was carried out using BEAST
software version 1.10.04 (Suchard et al., 2018). Two datasets
were evaluated. They comprised (i) the concatenated sequences
of all CiLV-C ORFs (except the pl5 of RNA2 because its
putative recombinant origin) (11,473 nts; n = 23 isolates)
and (ii) concatenated sequences of the complete p29 and the
partial p32 ORFs (1,083 nts, n = 132 isolates). In samples from
which more than one haplotype was sequenced, only those
showing divergent sequences were included in the analyses
(Supplementary Table 2), but nucleotide diversity inside a given
sample was always lower than 0.007. “Non-clock” maximum
likelihood phylogenetic trees were reconstructed with the best
evolutionary model (ITN93+G) using IQtree software version
1.5.5 (Nguyen et al, 2015), and the temporal signal was
evaluated by TempEst.

To assess the evolutionary history of the CiLV-C population,
the Bayesian Markov Chain Monte Carlo (MCMC) was estimated
using the BEAST version 1.10.4 The best model of nucleotide
substitution for the two analyzed datasets was TN934+G. The
Bayesian skygrid model (number of parameters = 20; time of
last transition point = 88) was selected as the tree coalescent
model and using the strict clock. The MCMC analyses were
performed with 100 million generations, sampling a tree every
1,000 steps. MCMC convergence was assessed by estimating the
effective sample sizes (ESS) using Tracer version 1.7 (Rambaut
et al, 2018). ESS > 100 are moderate values whilst values > 200
are considered better, according to the instruction manual
of the software®’. The maximum clade credibility (MCC) tree
was created by discarding the initial 10% of the chains and
summarized in TreeAnnotator version 1.10.4. The phylogenetic
tree was viewed and edited using IcyTree (Vaughan, 2017).

Population Genetics and Selection Tests
Population genetic parameters, i.e., diversity of nucleotide ()
and haplotype (Hd), the number of polymorphic sites (s),

3https://beast2.blogs.auckland.ac.nz/increasing-esss/

nucleotide differences (k), average mutation rates (6), and
haplotypes (H); and the ratio of non-synonymous (dN) to
synonymous (dS) nucleotide substitutions (o = dN/dS) were
calculated using DnaSP v. 6.12.03 (Rozas et al., 2017). Selection in
polymorphic sites of the CiLV-C ORFs was calculated using Fast
Unconstrained Bayesian AppRoximation for Inferring Selection
(FUBAR), Fixed Effects Likelihood (FEL), and Mixed Effects
Model of Evolution (MEME) methods with the GTR model,
implemented in Datamonkey 2.0 (Weaver et al., 2018). For
the identification of the amino acids under selection and
their involvement in the protein structure, predicted secondary
structures of deduced amino acid sequences of the P29 and
MP proteins from definitive and tentative members of the
genus Cilevirus: CiLV-C Crd01 (NC008169 and NC008170),
CiLV-C_SJP01 (KP336746 and KP336747), CiLV-C2_Colombia
(NC038848 and NC038849), hibiscus strain of CiLV-C2_Hawaii
(MG253805 and MG253804) and PfGSV_Snpl (MK804171 and
MKB804172) were obtained using PROMALS (PROfile Multiple
Alignment with Local Structure) (Pei and Grishin, 2007).

Tests of Selective Neutrality and
Differentiation in the CiLV-C Population

CiLV-C population expansion was evaluated by the statistical
tests Tajimas D (Tajima, 1989), Fu and Lis F and D (Fu and
Li, 1993), and Fu’s FS (Fu, 1997), implemented in DnaSP v.
6.12.03 package (Rozas et al., 2017). They estimated the difference
between two measures of genetic diversity, i.e., the mean number
of pairwise differences and the number of segregating sites. In
these tests, negative values denote populations in expansion or
after a recent bottleneck, whereas positive values mean a decrease
in population size and/or balancing selection.

Demographic expansions of CiLV-C subpopulations assessed
by mismatch distributions (distribution of pairwise nucleotide
differences) were performed based on the sum of squared
deviation (SSD) and Harpending’s Raggedness index (HRI) using
Arlequin v. 3.5.2.2 (Excoffier and Lischer, 2010). The HRI test
determines whether an observed mismatch distribution is drawn
from an expanded (small raggedness index or non-significative)
or a stationary population (large raggedness index), while the SSD
quantifies the smoothness of the observed mismatch distribution
and a non-significant result indicates an expanding population
(Rogers and Harpending, 1992; Harpend, 1994).

Genetic subdivision of the CiLV-C population was assessed
using the following tests implemented in DnaSP and Arlequin
v. 3.5.2.2: the nearest-neighbor statistic (Snn) (Hudson, 2000),
Hudson’s test statistics [Hst (haplotype-based statistics), Kst
(nucleotide-based statistics)], Wright’s fixation index (Fst), and
gene flow (Nm) (Hudson et al,, 1992). The Sun is a measure
of how often the nearest neighbors of sequences are found in
the same locality (Hudson, 2000). Sun values range from 0.5
to 1, being the lowest indexes a sign that isolates from both
locations are part of the same population and the highest ones
that the populations in the two locations are highly differentiated.
Hst and Kst statistics calculate the level of differentiation based
on haplotypes and nucleotides, respectively, and values close
to zero mean no differentiation. On the other hand, based on
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the proportion of the total genetic variance contained in a
subpopulation, the Fst test provides insights into the evolutionary
processes that influence the structure of genetic variation within
and among populations (Hudson et al., 1992). Nm, the number
of migrants successfully entering a population per generation,
was used to measure gene flow (migration) between populations
[FST#1/(4Nm+1)]. Besides, the partitioning of variation at
different levels was calculated by Analysis of Molecular Variance
(AMOVA) in Arlequin using 1,000 permutations.

RESULTS

The presence of CiLV-C was confirmed in all the 430
symptomatic samples collected from 304 plants of sweet orange,
six of mandarin, and in other five citrus plants whose species
could not be determined (Supplementary Table 1). RT-PCR
tests for the specific detection of citrus-infecting Brevipalpus-
transmitted viruses other than CiLV-C indicated the absence
of the cilevirus CiLV-C2 and the dichorhaviruses CiLV-N,
CiCSV, and OFV (Table 1). Overall, this study included CiLV-
C isolates collected from Argentina, Brazil, Bolivia, Colombia,
and Paraguay during the period 1932-2020. Based on the high
production volume and the large size of the farming area, ~92%
of the samples were collected from the citrus belt SP-MG, Brazil.
All the analyzed samples showed typical symptoms of citrus
leprosis disease, i.e., chlorotic and/or necrotic lesions on leaves
and fruits and necrotic lesions on branches (Figure 1).

Near-Complete Genome Sequencing of
New CiLV-C Isolates Reveals a Novel

Divergent Strain

Total RNA extracts of leaves from eight herbarium, nine
fresh, and one —80°C frozen-conserved samples were obtained
(Table 3). RNA integrity number (RIN) of the extracts prepared
from the herbarium samples was low, i.e., 1.6-2.1. Despite this,
de novo assembling of the raw reads using the SPAdes enabled
the recovery of more than 80-90% of the CiLV-C genomes from
the high-throughput sequencing (HTS) libraries. Particularly,
from the sample of sweet orange collected in 1941, in SP,
Brazil, few and shorter contigs were obtained and only ~60%
of the CiLV-C genome could be determined. In this case, gaps
between contiguous contigs were filled after a new round of
assembling using BBMap and the CiLV-C genome as a reference.
In sum, approaches combining de novo assemblies and the
iterative mapping increased the genome coverages by about
100% in several samples. The lower genome coverage observed
during the initial assembly steps of some herbarium samples
seemed independent of the collection year and the laboratory
where the HTS libraries were processed. Rather, it appeared
to be intrinsically associated with the conservation procedure
of every single sample, as previously observed (Hartung et al.,
2015). Recovery rates of viral genomes higher than 98% were
obtained from all fresh or —80°C conserved samples using the
same wet lab and in silico procedures and tools. Overall, the
complete or near-complete genomes of 18 studied isolates of
CiLV-C were obtained.

The pairwise comparison of the genome sequences of the
studied HTS CiLV-C isolates with those of the type viruses of
the clades CRD (isolate Crd01, NC008169 and NC008170) and
SJP (isolate SJP01, KP336746, and KP336747) showed values of
nucleotide sequence identity that ranged from 84.0 to 99.8% and
separates them into three groups (Figure 2 and Supplementary
Table 3). Fourteen isolates showed the highest identity values
with the reference sequence of the clade CRD, three with that of
the clade SJP, while the isolate CiLV-C_PY_Asu02, collected in
Asuncién, Paraguay in 1937, typified a novel diversity of CiLV-C
and shared less than 86% nucleotide sequence identity with the
reference genomes.

CiLV-C_PY_Asu02 shows the same genomic organization of
the type member of the genus Cilevirus. The profile of nucleotide
sequence identity across the genomes of the isolates PY_Asu02
and Crd01 follows the same pattern observed in the comparison
between the type viruses of the clades SJP and CRD (Figure 2).
Deduced amino acid sequences of ORFs from CiLV-C_PY_Asu02
and CiLV-C Crd01 show pairwise identity values ranging from
81% for P61, to 100% for P15, which resembles what is observed
in the comparison among proteins from viruses of the clades SJP
and CRD (Table 4). Notably, the stretch of nucleotide sequences
at the 5’-end of the RNA2 in CiLV-C_PY_Asu02, which includes
the ORF p15 and part of the IR, is highly conserved between
the isolates of the three clades, suggesting a common origin.
CiLV-C_PY_Asu02 shows percentages of nucleotide sequence
identity lower than 50% with the cileviruses CiLV-C2 and PfGSV
(Table 4), confirming that the isolate PY_Asu02 represents a viral
diversity previously unknown among members of the species
Citrus leprosis virus C.

RNA2 of CiLV-C Strains Harbor Signals of

Recombination

Putative signals of recombination events were detected in the
RNA2 of CiLV-C using two datasets comprising the complete
(n = 23) and partial (n = 56) sequences of the molecule. Partial
RNA2 molecules contained the concatenate sequences of p15-IR-
p32.

In the analyses of the complete RNA2 molecules, at least four
out of seven programs implemented in the RDP version 5.5
identified recombinant events involving pI15 and the intergenic
region (IR) (Figure 3 and Supplementary Table 4). For instance,
in the isolates BR_SP_SJP01, BR_SP_SJP05, BR_SP_Lim09,
BR_SP_SAPO03, and BR_SP_SdM15 of the clade SJP, as well as
in the isolate CiLV-C_PY_Asu02, the seven programs suggested
two breakpoints, one inside the IR and the second one closer
to the 3’-end of their molecules. In both cases, isolates from the
clade CRD (BR_SP_SPall or BR_RS_Urg01) were detected as the
minor parents while the major parents were indeterminates. The
third event, in the 3’-end of the RNA2 of CiLV-C_BR_SP_SJP01,
involves CiLV-C_BR_SP_Lim09 as the major parent and an
unknown minor parent.

When the alignments of the concatenated sequences were
used, despite the artificial organization of the sequences, four
events could be detected. The first two were identified in the p15
and the IR of thirteen isolates belonging to the clade SJP, with
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FIGURE 2 | Similarity plots of the nucleotide sequences of the RNA1 and RNA2 of the CiLV-C isolates. The full-length genome sequences of the 18 studied CiLV-C
isolates were compared to those of the type-member viruses of the clades CRD (A) and SJP (B). Curves depict the comparison between the analyzed and a
reference genome. Each plotted point is the percent identity (vertical axis) within a sliding window 200 bp wide centered on the position plotted, with a step size
between points of 20 bp. The horizontal axis indicates the nucleotide positions across the RNA1 and RNA2 molecules of the reference genomes. The horizontal bars
above the curves are a cartoon of the ORFs of the GiLV-C genome. Plots were generated using SimPlot (Lole et al., 1999).
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CiLV-C_BR_PA_Bel01 as the minor parent and unknown major
parents; the third event was detected within the IR of the isolate
CiLV-C_BR_PR_Mgf01, with the isolate CiLV-C_ARO5 as the
minor parent and an unknown major parent. Finally, the fourth
event, detected in the isolate PY_Asu02, has breakpoints in the
IR and the beginning of p32, and the isolate BR_PR_Ldb01 was
indicated as the minor parent while the major parent could not be
identified (Supplementary Table 4). Recombination events using
separately either the partial sequences of the ORF p32 (n = 270)
and those of the complete ORF p29 (n = 190) were not detected.

Phylogenetic and Genetic Analyses
Support the Existence of Three Distinct
Clades of CiLV-C: CRD, SJP, and ASU

Datasets grouping CiLV-C sequences generated in this work
and those retrieved from GenBank were used for phylogenetic
analyses. They comprised, in total, 23 complete or near-complete
genomes, 167 complete p29 sequences, and 247 partial p32
sequences from isolates collected in six countries across Latin
America in the period 1932-2020.
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TABLE 4 | Nucleotide (nt) and deduced amino acid (aa) sequence identities between CiLV-C_PY_Asu02 and other members of the genus Cilevirus.

CiLV-C PY_Asu02? CiLV-C Crd01 CiLV-C SJPO1 CiLv-C2_Co CiLV-C2_Hw PfGSV_Snp1
nt aa nt aa nt aa nt aa nt aa
RNA1 86.2 - 85.1 - 57.2 - 58.0 - 57.1 -
RdRp 86.3 93.4 88.2 94.9 59.6 58.86 59.8 58.7 59.2 57.9
p29 86.0 94.0 85.6 89.8 43.7 34.54 45.5 33.9 44.4 32.6
RNA2 85.8 - 85.1 - 44.3 - 43.3 - 43.4 -
p15 98.5 100 98.5 100 28.5 19.61 34.9 20.4 27.7 19.2
R 85.0 - 84.0 - 29.1 - 31.4 - 26.9 -
p61 82.1 81.1 82.9 83.8 44.7 31.72 43.4 33.9 45.3 32.6
p32 89.3 95.0 86.5 94.0 55.3 51.16 54.9 50.5 52.5 53.9
p24 88.6 94.0 89.2 94.4 60.9 60.63 60.3 59.7 60.9 60.4

The highest values are highlighted in bold.

d4GenBank accession numbers of each isolate: CiLV-C_PY_Asu02: MT554532 (RNA1) and MT554546 (RNA2); CiLV-C Crd01: NC008169 and (RNA1) and NC008170
(RNA2); CiLV-C SJPO1: KP336746 (RNA1) and KP336747 (RNA2); CiLV-C2_Co: NC038848 (RNAT) and NC038849 (RNA2); CiLV-C2_Hw: MG253805 (RNAT) and

MG253804 (RNAZ2); and PfGSV_Snp1: MK804171 (RNAT) and MK804172 (RNA2).

Bayesian phylogenetic reconstructions using the data sets
of p29 and p32 showed three major branches, where the
two largest ones encompassed the isolates of the previously
identified lineages CRD and SJP (Figure 4A and Supplementary
Figure 1). The third branch, supported with a high value of
posterior probability (0.88) and hereafter called the lineage
ASU, included only the isolate CiLV-C_PY_Asu02, collected in
Asuncion, Paraguay, in 1937. The subdivision in three clades of
the CiLV-C population was also supported by the analysis of
intra- and inter- clades genetic distances. Using both p29 and
p32, inter-clade genetic distances (0.106 < dinter—cage < 0.173)
were, generally, 11-fold higher than the intraclade distances
(dintra—clage < 0.01) (Figure 4B). Moreover, trees constructed
with the complete genome sequences showed the same clade
topology observed in the analyses using the independent ORFs
(Figure 4C). It is noteworthy that for the construction of the
RNA?2 tree, the first 1,434 nts of the 5'-end of each molecule were
removed considering the putative origin by recombination of
this genomic region. Reassortment events between isolates from
either different or the same clade were not observed.

Nucleotide (1r) and haplotype diversity (Hd) values intrinsic
to the CiLV-C population were calculated based on ORFs
p29 and p32 (partial sequence) (Table 5). Although the
nucleotide diversity of the whole population (SJP+CRD+ASU)
was relatively very low (m~0.07), its value was roughly 10-fold
higher than those observed for the independent clades SJP and
CRD (m~0.006-0.01), and the pattern was similar regardless of
the analyzed ORE i.e., p29 or p32. The haplotype diversity was
close to 1 in any of the analyzed groups.

Viruses of the Clade CRD Are Spread
Across the Continent Whereas Those of
the Clade SJP Are Restricted to the
Brazilian Citrus Belt SP-MG

Spatial and temporal distribution of isolates of the clades CRD
and SJP were assessed by RT-PCR using clade-specific primers
for the detection of p29 (RNAI1) and p24 (RNA2) sequences.

Results were screened for the spatial and temporal distribution of
members of each clade (Table 1, Figure 5, and Supplementary
Table 1). Unfortunately, the genomic characterization of the
isolate CiLV-C_PY_Asu02 was obtained when most of the
samples had been already evaluated. Therefore, information on
the current distribution of ASU clade viruses, if they are still
circulating, is not available. An in silico analysis indicated that in
case viruses of the clade ASU might be present in the evaluated
samples, primers used in the detection of members of the clades
CRD and SJP would not be able to detect them, at least under the
thermal cycling conditions performed in this study.

A broad-based analysis of the data indicated the presence
of members of the clade CRD distributed between commercial
(141/186; 75.8%) and non-commercial (45/186, 24.2%) orchards
all over the period 1932-2020. In contrast, members of the clade
SJP were almost exclusively found in commercial orchards in
the citrus belt SP-MG (Table 1 and Figure 5). In commercial
orchards, from the samples collected during the period 2003—
2020, 64% of lesions (240/375) were infected with viruses of
the clade SJP, 16.2% with CRD (61/375), and 19.8% (75/375)
exhibited mixed infections involving viruses of the two clades
(Figure 5). Interestingly, out of commercial orchards, isolates of
the clade SJP were detected in only two samples collected in a
backyard tree in Séo José do Rio Preto, SP, in the neighborhood
of the citrus belt SP-MG.

CiLV-C SJP and CRD Subpopulations Are

Mainly Under Purifying Selection

Analysis based on the nucleotide sequences of p29 and p32
suggested purifying selection on the CiLV-C subpopulations CRD
and SJP (Table 5). The strength of negative selection is weaker on
p32 (w =0.137) than on p29 (w = 0.278). When subpopulations
were compared by each ORE, the highest values corresponded to
P29 of the clade CRD (wpp9 = 0.448). Consistent with the low o
values detected, a large number of amino acids under purifying
selection were identified across the amino acid sequences of
P29 and MP, as supported by the FUBAR, FEL, and MEME
programs implemented in Datamonkey 2.0 (Weaver et al., 2018;
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FIGURE 3 | Evidence of recombination in the RNA2 of CiLV-C. The diagram
depicts three recombination events detected using the alignment of the
completed RNA2 molecules of 23 isolates. Multicolored horizontal bars
represent the genome of the recombinant molecules. Major and minor
parentals are indicated by black and gray bars and numbers (#) as described
in the legend. Dashed vertical lines indicate the recombination breakpoints
using a cartoon representing the RNA2 molecule of CiLV-C as reference.
Event 1 shows the recombination found in all isolates of the clade SJP, event
2 was detected in the isolate PY_Asu02 (clade ASU), and event 3 in
BR_SP_SJPO01 (clade SJP). Recombination events were detected by more
than four programs implemented in the software RDP. Details of these and
other recombination events are shown in Supplementary Table 4.

Supplementary Table 5). Much of the positions detected under
negative selection using the FEL method matched with those
described in a previous report (Ramos-Gonziélez et al., 2016).

CiLV-C SJP and CRD Are Two Genetically
Distinct and Expanding Subpopulations

Snn, Fst, Kst, and Hst tests were implemented to evaluate the
genetic differentiation between the CiLV-C subpopulations. Snn
and Fst values > 1 showed a highly structured population
with significant genetic differentiation between the clades CRD
and SJP (Table 6). Kst and Hst values indicated a higher
level of genetic differentiation considering the p29 than the
p32 sequences. Gene flow (Nm) values calculated for both
ORF sequences were smaller than 0.03 indicating that the
gene flow among populations was infrequent or almost non-
existent (Table 6).

Moreover, the molecular variance (AMOVA) test carried out
for the detection of genetic differentiation between the CiLV-
C subpopulations revealed the largest variance between the
subpopulations CRD and SJP (~93%), whereas it reached only
7% within each subpopulation (Table 7). With AMOVA statistic
values close to 1, the Fst results based on p29 and p32 allowed us
to refute the Null hypothesis of the non-differentiation between
CiLV-C subpopulations.

Neutrality tests of the CiLV-C subpopulations were estimated
using three statistic tests (Fu and Lis D and E Fus Fs, and
Tajima’s D) (Table 8). All values for p29 and p32 were negative
or non-significant. These results suggested that the CiLV-C
subpopulations are not neutral, but possibly expanding. To
further address this question, we determined whether the data fit
the sudden expansion model using the sum of square deviations
(SSD) and Harpendings Raggedness index (HRI). Both SSD
and HRI values were non-significant (Table 8), supporting the
hypothesis of population expansion.

The Most Recent Common Ancestor of
CiLV-C Lineages Dates Back, at Least,
Approximately 1,500 Years Ago

To investigate the evolutionary dynamics and the time to the
most recent common ancestor (tMRCA) of CiLV-C lineages, two
MCC trees were constructed using two datasets. The topology of
both trees was similar (Figure 6 and Supplementary Figure 2).
However, the tree using the concatenated RdRd-p29-p61-p32-
p24 reached only moderated values of ESS (100 < ESS < 200)
for some statistic parameters, likely as a consequence of the
lower number of sequences (n = 23). The MCC tree generated
with the concatenated p29-p32, with a larger dataset (n = 132),
showed a moderate temporal signal (correlation coeflicient = 0.3
and R®> = 0.26, Supplementary Figure 3), and ESS values
always > 300. This MCC tree included sequences of isolates
collected in Argentina (n = 4), Panama (n = 1), Paraguay (n = 1),
and Brazil (n = 126) during the period 1932-2020. Therefore,
we selected the tree generated with the concatenated p29-p32
as the best representative of the evolutionary history of CiLV-C
in the Americas.

Based on the concatenated p29-p32, the most recent common
ancestor (MRCA) of the three CiLV-C lineages dates back to 500
A.D. [supported by a posterior probability (PP) of 1 and 95%
highest probability density (HPD) of 115-875 years A.D.] (node
A in Figure 6). This ancestral virus diverged into viruses that
gave rise to two lineages: SJP and another one, intermediary, that
subsequently diverged into the lineages ASU and CRD (node B).
The MRCA of the lineages ASU and CRD dates back to 740 A.D.
(PP = 0.87 and HPD 95% = 400-1061 years A.D.). Hence, the
diversification events represented in nodes A and B overlap in
the posterior probability distributions (Figure 6). Diversification
of clade CRD happened around 160 years ago, ~1860 A.D. (node
C, PP =1 and HPD 95% = 1812-1897 years A.D.), whereas the
diversification of clade SJP occurred ~1940 A.D., less than 100
years ago (node D, PP = 1 and HPD 95% = 1856-1918 years
A.D.) (Figure 6). Despite the moderate ESS of the MCC based on
the concatenated RARd-p29-p61-p32-p24, for the sake of a better
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FIGURE 4 | Phylogenetic relationships and genetic distances among CiLV-C strains. Phylogenetic trees were generated by Bayesian inference using MrBayes and
based on p29 (190 isolates, 795 nts) and p32 (270 isolates, 288 nts, partial) (A), and the complete sequences of the RNA1 molecules and partial sequences of the
RNA2 molecules (067, p32, and p24) of 23 isolates of CiLV-C (B). Inter- and intra-clade nucleotide distances were calculated considering independent ORFs and
complete genomic molecules (C). The maximum clade credibility trees were generated with 6,000,000 generations and using the appropriate sequences of
CiLV-C2_Colombia (NC038848 and NC038849) as an outgroup. Tree branches were identified according to CiLV-C lineages.
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understanding of the evolutionary viral process, the tMRCA of
the three CiLV-C lineages was also assessed considering that
dataset. The virus representing the MRCA of the main lineages
dates back to ~4000 B.C. (Supplementary Figure 2).

DISCUSSION

Citrus leprosis (CL) disease is a serious multi-etiological viral
pathology affecting citrus in Latin America. In Brazil, the form of
CL caused by the cilevirus CiLV-C is prevalent and, economically,
the most detrimental virus-induced disease affecting the citrus
orchards (Ramos-Gonzélez et al., 2018). A former study reported

TABLE 5 | Population genetics parameters and assessment of selection pressure
for ORF p29 (795 nts) and p32 (288 nts, partial sequence) of GiLV-C.

ORF Dataset (number H Hd n w (dN/dS)
of isolates)

P29 SJP+CRD+ASU 159 0.9975 0.07519 0.278
(190)
SJP+CRD (189) 158 0.9975 0.07501 0.294
SJP (106) 87 0.995 0.00803 0.359
CRD (83) 71 0.995 0.00994 0.448

p32 SJP+CRD+ASU 70 0.930 0.07284 0.137
(270)
SJP+CRD (269) 69 0.929 0.07224 0.165
SJP (190) 49 0.917 0.01010 0.362
CRD (80) 27 0.777 0.00631 0.145

Independent analyses were carried out with different combinations of viral isolates
according to phylogenetic clades.

H, number of haplotypes; Hd, haplotype diversity; w, nucleotide diversity; and
w = dN/dS, ratio of non-synonymous (dN) to synonymous (dS) substitutions.

the existence of two viral clades inside the population of
CiLV-C (Ramos-Gonzélez et al., 2016), but the ecology of these
subpopulations could not be deeply assessed due to the limited
number of viral isolate sequences available. In the present
approach, which includes both fresh and herbarium citrus
samples infected by CiLV-C, we obtained the complete and partial
nucleotide sequences of the viral ORFs p29 and p32, respectively,
from 268 viral isolates. Among them, we revealed the near-
complete genomes of 18 isolates, which were mostly collected
during the first half of the last century.

Global analyses of the generated dataset by phylogenetic
and populational statistical tools confirmed the existence of the
two previously identified clades CRD and SJP (Ramos-Gonzalez
et al.,, 2016), whereas negative results of the Fu and Li’s D and
Tajimas D neutrality tests and the non-significative pairwise
mismatch distribution indicated the expansion of the viral
population or more likely a population that frequently undergoes
bottlenecks (Table 8). Analyses also showed that CRD and SJP
subpopulations are genetically well-differentiated (Fst > 0.92),
have very low genetic diversity (t~0.01) where almost each
haplotype is unique (0.8 < Hd < 0.99), and, as a whole, are under
purifying selection (w < 0.5). Such values are the quantitative
expression ensuing from the sum of biological factors underlying
the CL pathosystem, which, in general, may lead the CiLV-
C subpopulations to continuous bottlenecks (Ramos-Gonzalez
et al,, 2016). CiLV-C has a very limited natural known host
range, infects a reduced number of cells around the inoculation
sites, and, in nature, is exclusively transmitted by Brevipalpus
mites, the only mean by which the virus can reach new infection
foci even within a single leaf due to the absence of systemic
movement capacity (Freitas-Astta et al., 2018). Interestingly, the
population of coffee ringspot virus, a dichorhavirus with some
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FIGURE 5 | Distribution of CiLV-C strains in Latin America (A) and across municipalities in the Brazilian states of Sdo Paulo and Minas Gerais (B) in the period from
1932 to 2020. Viral detection was based on RT-PCR assays for specific identification of p29 and p24 from isolates of the CRD and SJP clade. CiLV-C_ASU was
identified by high-throughput sequencing. The color-coded legend indicates the presence of a viral isolate, concomitantly or at a different time in the same plant, in
single or mixed infections. The map also depicts the distribution of CiLV-C isolates whose sequences were already available in the GenBank database.
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biological features comparable to those of CiLV-C, e.g., absence
of systemic infection, few natural hosts, and Brevipalpus mite
transmission, also displays low variability and purifying selection
(Ramalho et al., 2016).

While the vast majority of the samples evaluated in this study
were infected by CiLV-C isolates of the clades CRD and SJP,
the herbarium sample collected in Paraguay, in 1937, revealed
to be unique (Figures 4, 6). In the phylogenetic analyses using
either individual ORFs or complete genomic sequences, the
isolate PY_Asu02 was separated into a third branch, called clade
ASU (Figure 4). The genome of CiLV-C_PY_Asu02 has the
typical organization of cileviruses, with roughly 86% nucleotide
sequence identity with the reference genomes of the clades CRD
and SJP. Notably, the stretch encompassing the 5'-end of its
RNA2 shows high conservation with members of the other
two clades and likely originated by recombination (Figure 3),
as also observed in other CiLV-C strains (Ramos-Gonzalez
et al., 2016). Recombinant strains can result in viruses with
improved virulence, best adaptability to a changing environment,
or expansion in the host ranges and vector species (Garcia-Arenal
et al., 2001). Even though the role of the 5'-end of the CiLV-C
RNA2 is not well understood yet, the highly conserved nucleotide
sequence across viruses of the three CiLV-C clades (Figure 2)
highlights the participation of this region in viral biology and,
particularly, points out the involvement of recombination events
shaping the genome of cileviruses.

The set of CiLV-C infected samples gathered in this work is
the largest ever undertaken. Its composition is heterogeneous,

showing temporal and geographical biases following the trend
of the relative importance of citrus crop and the incidence of
CL across Latin America. Despite this, the holistic analysis of
the dataset discloses ecological relationships between members
of the clades CRD and SJP whose extension and authenticity still
need to be proven, e.g., (i) inside the citrus belt SP-MG, viruses of
both lineages are unevenly distributed, (i) members of the clade
SJP are more frequently found in single infection (63%) than
those of the CRD (16%), (iif) mixed infections in the same lesion
were detected in 20% of the samples, whereas (iv) simultaneous
infection of viruses of the clades CRD-SJP in the same orchard
or tree accounts for 1% of samples (Figure 5), (v) viruses of the
clade SJP were detected neither in areas outside the citrus belt SP-
MG nor in samples collected before 2015, and (vi) except for the
isolate PY_Asu02, which belongs to clade ASU, all other samples
collected out of the citrus belt SP-MG were infected by viruses of
the clade CRD, including a sample from an organic commercial

TABLE 6 | Population genetic differentiation analysis based on ORFs p29 (795
nts) and p32 (288 nts, partial) of GiLV-C.

ORF  Subpopulation Snn Kst? Hs? Fst Nm
P29 CRD and SJP 1.00000  0.40534 0.00246  0.93675 0.03
p32 CRD and SJP 1.00000  0.50932 0.07276  0.94339 0.08

ap-value: 0.01 < p < 0.05.
Snn, nearest-neighbor statistic; Hst, Hudson’s test statistics; Kst, nucleotide-based
statistics; Fst, Wright’s fixation index, and Nm, gene flow.
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TABLE 7 | Analysis of molecular variance (AMOVA) for CiLV-C sub-populations of the clades CRD and SJP, based on ORFs p29 (795 nts) and p32 (288 nts, partial).

Source of variance d.f.2 Sum of squares Variance components Percentage of variation AMOVA statistics p-value
p29 Among sub-populations 1 5185.937 55.66483 Va 94.07 0.94067 0.00
Within sub-populations 187 656.593 3.51119 Vb 5.93
Total 188 5842.529 59.17602
p32 Among sub-populations 1 2258.226 20.22056 Va 92.49 0.92491 0.00
Within sub-populations 267 438.320 1.64165 Vb 7.51
Total 268 2696.546 21.86221

aDegrees of freedom.

TABLE 8 | Genetic diversity indices, pairwise mismatch distributions, and neutrality tests (Fu and Li's, Fu's Fs, and Tajima’s D) based on ORFs p29 (795 nts) and p32

(288 nts, partial) of CiLV-C.

ORF Sub-population s k 0 Mismatch Neutrality tests
SsD? HRI? Fu and Li’s D? Fu and Li’s F? Fu’s Fs® Tajima’s D
p29 SJP 138 6.383 144 0.0069 0.0075 —5.59231 —5.12367 —127.897 —2.542367
CRD 154 7.841 1568 0.0048 0.0033 —6.13159 —-5.57164 —86.537 —2.556719
p32 SJP 50 2.908 51 0.0235 0.0700 —5.86479 -5.01720 —33.099 —1.99819¢
CRD 27 1.494 28 0.0718 0.2135 —4.67051 —4.50782 —29.520 —2.28804"
aNot significant p-values.
bp < 0.02.
®None of the statistics gave significant p-values.
dp < 0.001.
°p < 0.05.
fP<o0.01.

s, number of segregating sites, k, mean number of nucleotide differences; 6, mean mutation rate per site; SSD, sum of squared deviation; HRI, Harpending’s Raggedness

index.

orchard collected in Par4, Brazil. The higher prevalence of viruses
of the clade SJP in commercial orchards of the citrus belt
SP-MG suggests this subpopulation could have some adaptive
advantages over those in the CRD one. Preliminary studies on
the diversity of Brevipalpus mites in Brazil revealed a large genetic
variability of the B. yothersi population, however, the association,
if any, between a given mite haplotype and any host plant or
geographical origin remains to be addressed (Sanchez-Veldzquez
etal., 2015; Salinas-Vargas et al., 2016). Similarly, the nature of the
Brevipalpus mite interaction with clade-specific CiLV-C strains
and its significance on virus ecology are also lacking. On the other
hand, the existence of a large number of CL lesions with mixed
infections gives support to the recombination events detected
in silico and suggests the simultaneous transmission of viruses
from different clades by a single mite, and/or the sequential
arrival of mites bearing a single viral strain to the same lesion.
Conceivably all possibilities may happen in nature, but whatever
is the case, the increased attractiveness of Brevipalpus mites by
CiLV-C-infected leaves (Arena et al., 2016) might be a factor
contributing to the occurrence of mixed infections.

Natives of Southwest Asia, plants of the genus Citrus have
spread worldwide and their introduction into America, in the
early sixteenth century, is intrinsically linked to the advent of
the European colonization. Commercial exploration of the citrus
crop in Brazil began in the seventeenth century (Carvalho et al.,
2019; Passos et al., 2019), but expanded and became one of
the most important Brazilian commodities in the middle of the
twentieth century (Mattos et al., 2005; Neves et al., 2011; Carvalho

et al., 2019). According to the phylodynamic analysis based on
p29-p32, the most recent common ancestor (tMRCA) of CiLV-
C lineages was dated in 500 A.D., whereas intensive but less deep
diversification processes inside the clades CRD and SJP have been
occurring from the nineteenth century. Based on a second dataset
that included the sequences RARp-p29-p61-p32-p24 of 23 isolates
of the three lineages, the MRCA of the main lineages dates back
more than 3000 years before. However, since the MCC quality
parameters with the second dataset only reached moderate ESS
values, the resultant tMRCA must be only considered as a
framework for further evaluations. It could be expected that the
analysis of new sequences will allow higher accuracy in the
determination of tMRCA providing a better description of
the evolutionary history of CiLV-C lineages. Regardless of this,
bringing together the timelines described by the two datasets we
can conclude that (i) ancestors of the three viral clades might
have been originated in contact with native ecosystems of South
America and (ii), the expansion of the citriculture in Brazil and
other countries in the region, has contributed, although in a low
rate, with the intra-clade diversifications of CiLV-C.

CL is considered an emerging disease affecting a crop that,
at least in Brazil, encompasses a relatively low genetic diversity
and high-density plantings. Increasing pieces of evidence strongly
hypothesized that wild ecosystems are a major source of diversity
of plant viruses, which have co-evolved with their wild hosts
long before they were domesticated (Pagan and Holmes, 2010;
Rodriguez-Nevado et al., 2017). In addition to some Citrus
spp. and their hybrids, only plants of the species Commelina
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FIGURE 6 | Bayesian maximum-clade-credibility time-scaled phylogenetic tree using the concatenated sequences of the p29 (795 nts) and p32 (288 nts, partial)
ORFs from 132 GiLV-C isolates collected in the period 1932-2020 in South America. Horizontal gray bars on nodes (A-D) indicate the uncertainty for the date of
each node (95% highest posterior density—HPD—intervals). Figures near the main nodes represent the posterior probability values. The phylogenetic tree was

edited using IcyTree.
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benghalensis and Swinglea glutinosa are reported as natural hosts
of CiLV-C (Leon et al., 2008; Nunes et al., 2012; Garita et al,,
2014; Freitas-Astta et al.,, 2018), all of them are exotic to the
Americas (Weniger et al., 2001; Webster et al., 2005). Therefore,
the natural host range of CiLV-C is likely not yet fully known or
the interaction with its wild hosts might no longer exist in nature.
The distribution and dispersion of cileviruses are mediated by the
polyphagous Brevipalpus mites, capable of feeding on more than
150 genera of plants, including several crops, ornamentals, and
forest plants (Childers et al., 2003). Consequently, the CiLV-C
vector is likely the main path between native and exotic plants
in the Americas (Freitas-Astia et al., 2018). Similar to CiLV-
C, the cilevirus CiLV-C2 also infects citrus plants and seems to
have a narrow range of known natural hosts, e.g., Citrus spp.,
S. glutinosa, Hibiscus sp., and Dieffenbachia sp. (Melzer et al.,
2013; Roy et al., 2015, 2018). In contrast, PfGSV is the only
known cilevirus infecting native plants of the Americas, e.g.,
Passiflora spp. (Kitajima et al., 1997; Ramos-Gonzélez et al.,
2020). This virus can be found naturally infecting more than
twenty plant species and, notably, symptoms are not lesions
as locally restricted as those observed in citrus plants infected
by CiLV-C. Since the interaction of CiLV-C with citrus plants
is dominated by a hypersensitive-like response (Arena et al.,
2016, 2020), the expansion of the host range to Citrus spp.
might have resulted in CiLV-C fitness reduction. Alternatively,
based on the low variability of viruses inside each CiLV-C
clade, a thought-provoking question is whether CiLV-C can be
considered a specialist virus, whose interaction with citrus is

carefully selected to act as a helper (effector-like) factor of the
mite infestation to suppress the plant defenses (Arena et al., 2016,
2018, 2020).

Altogether, this study provides the most complete snapshot
of the CiLV-C population to date. Throughout molecular
epidemiology analyses, we have revealed the structure, sources of
the genetic variability, and forces involved in the recent evolution
of this viral population. The evolutionary history of CiLV-C
may be strongly influenced by interaction with its main known
host, Citrus spp. during a relatively short period, which at most
includes the last 500 years. Maximum values of variability inside
the population are typified by its subdivision into the clades
ASU, first identified in this study, CRD, and SJP. These three
clades are the outcome of diversification processes that occurred
before the viral contact with the citrus host. Moreover, besides the
highly frequent bottlenecks as a result of mite transmission, the
incompatible host-virus interaction with an intensive crop with
a relatively low genetic variability, likely prevents the expansion
and diversification of the CiLV-C subpopulations. In practical
terms, our results confirm the possibility of recovering viral
sequences present in herbarium citrus leaf samples despite the
low RIN values of the RNA extracts, as previously successfully
described using dried fruit peels (Hartung et al., 2015). Moreover,
the current study reinforces the prevalence and wide distribution
of CiLV-C in the largest citrus commercial area of Brazil and
reveals the urgency for updating detection systems able to identify
the presence of CiLV-C variants whose epidemiological profiles
are currently unknown.
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